Diabetes Care 2018 Aug;
PubMed ID: 30082327
Abstract
OBJECTIVE: Roux-en-Y gastric bypass (RYGB) induces type 2 diabetes remission (DR) in 60% of patients at 1 year, yet long-term relapse occurs in half of these patients. Scoring methods to predict DR outcomes 1 year after surgery that include only baseline parameters cannot accurately predict 5-year DR (5y-DR). We aimed to develop a new score to better predict 5y-DR.
RESEARCH DESIGN AND METHODS: We retrospectively included 175 RYGB patients with type 2 diabetes with 5-year follow-up. Using machine learning algorithms, we developed a scoring method, 5-year Advanced-Diabetes Remission (DiaRem) (5y-Ad-DiaRem), predicting longer-term DR postsurgery by integrating medical history, bioclinical data, and antidiabetic treatments. The scoring method was based on odds ratios and variables significantly different between groups. This score was further validated in three independent RYGB cohorts from three European countries.
RESULTS: Compared with 5y-DR patients, 5y-Relapse patients exhibited more severe type 2 diabetes at baseline, lost significantly less weight during the 1st year after RYGB, and regained more weight afterward. The 5y-Ad-DiaRem includes baseline (diabetes duration, number of antidiabetic treatments, and HbA) and 1-year follow-up parameters (glycemia, number of antidiabetic treatments, remission status, 1st-year weight loss). The 5y-Ad-DiaRem was accurate (area under the receiver operating characteristic curve [AUROC], 90%; accuracy, 85%) at predicting 5y-DR, performed better than the DiaRem and Ad-DiaRem (AUROC, 81% and 84%; accuracy, 79% and 78%, respectively), and correctly reclassified 13 of 39 patients misclassified with the DiaRem. The 5y-Ad-DiaRem robustness was confirmed in the independent cohorts.
CONCLUSIONS: The 5y-Ad-DiaRem accurately predicts 5y-DR and appears relevant to identify patients at risk for relapse. Using this score could help personalize patient care after the 1st year post-RYGB to maximize weight loss, limit weight regains, and prevent relapse.